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NATTONAL ADVISORY COMMITTEE FOR AERCNAUTICS

TECHNICAL NOTE 4281

SECOND-ORDER SLENDER-BODY THEORY -
AXTSYMMETRIC FLOW

By Milton D, Van Dyke
SUMMARY

Slender-body theory for subsonlc and supersonic flow past bodies of
revolution is extended to a second approximation., Methods are developed
for handling the difficulties that arise at round ends., Comparison is
made with experiment and with other theories for several simple shapes.

INTRODUCTION

Slender-body theory is the useful approximation introduced into
fluid mechanics by Munk (ref. 1) for calculating the 1ift of airships,
and extended to slender lifting wings in compressible flow by Jones
(ref. 2). For such problems concerned with 1ift, its simplicity is such
that the solution is independent of Mach number, and 1s found merely by
solving Laplace'!s equation in two dimensions.

The theory becomes only slightly more complicated when the thickness
of a body is of concern. Then the solution Includes a logerithmic term
proportional to cross-sectional area that varies with Mach number, as
was shown by Ward (ref. 3) in the case of supersonic flow past general
slender shapes. The analogous result for subsonic flow was found inde-
pendently by Keune (ref. L), Heaslet and Lomax (ref. 5), and Adams and
Sears (ref. 6).

Because slender-body theory 1s so simple and useful, it is natural
to attempt to improve its accuracy by including nonlinear effects in
higher approximations. Thus, for bodies of revolution in supersonic
flow, Lighthill (ref. 7) found the second-order slender-body solution
‘for the crossflow due to incidence, and Broderick (ref. 8) attacked the
flow at zero angle of attack. Recently Lighthill has outlined the second
approximation for supersonic flow past genersl shapes (ref. 9). The only
application to nonclreular shapes is the solution for the elliptiec cone
at zero incidence (ref. 10). These four references constitute the liter-
ature on this subject, aside from papers by Adams and Sears (ref. 6),
Legras (ref. 11), and Keune (ref. 12), who ignore nonlinear effects and
seek only a closer approach to the full linearized solution.
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The present paper is devoted to second-order slender-body theory in
subsonic as well as supersonic flow, and is restricted to bodies of revo-
lution. These are the simplest and most practical shapes, and serve to
illustrate the methods that will be required later in treating bodies of
general cross section. Only zero angle of attack is considered because
Lighthill's treatment of the crossflow at supersonic speeds is entirely
satisfactory, and could readlly be extended to subsonic speeds. On the
other hand, Broderick's solution for the present problem of zero incidence
at supersonic speeds is so enormously more complicated than necessary that
1t could probably never be appllied to any shape except the cone.

The formal theory set forth here is relatively simple, being comprised
in equations (1) to (13). Complications appear, however, in the case of
stagnation points, to which a considerable portion of the paper is devoted.
It is shown that real difficulties arise only for round noses, and that
for subsonic flow they can be overcome by comparison with the known solu-
tion for a paraboloid. Only the region spanned by the body is considered,
though the flow upstreem and downstream could be treated in the same way.
The second approximation, like the first, depends upon an Integral that
is the counterpart for slender bodies of revolution of the "airfoil
integral™ of subsonic thin-wing theory (ref. 13).

This investigation was begun in 1953, inspired by a suggestion of
Mex. Heaslet, to whom the author is indebted also for subsequent helpful
discussions. Some of the main results were presented at colloquia at
the University of Manchester and Fort Halstead in 1954 and 1955. Comple-
tion has been delayed by the sesrch for a method of treating round noses,
which was only recently found (ref. 1k).

FORMAL: SECOND APPROXIMATION

Resumé of Second-Order Problem

Consider a uniform subsonic or supersonic stresm flowing past a
slender body of revolution at zero angle of attack (sketch (a)). The
question of just how smooth and
slender it must be will be con-
r R(x) sidered later, but the nose (and,
in subsonic flow, also the tail),

L, if not pointed, is assumed to be
no blunter than round. _

Vorticlty affects the flow -
Sketch (a).— Notation for body of only in the sixth approximation,
revolution. and below that the veloecity dis-
turbances induced by the body
(referred to the speed U of the free stream) are the gradient of a
perturbation potential ¢. Linearized. theory is concerned .with a first
approximation ¢ that satisfies the Prandtl-Glauert equation

r

i
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P
(1 ~1)Qyy +Pppt 5 = O (1)

(Principal symbols are defined in appendix A.) 1If one attempts to improve
the linearized solution, the second approximation ¢ must satisfy the
iteration equation (ref. 15)

Br

y+1
(l'M2)¢xx+¢rr+? = M2[2< 2 MZ 41 -M2 x¢mc+2q)r¢xr+q’r2‘pm'] (2)

The boundary conditions are that the perturbation potential vanish
radially far from the body (actually at the bow wave in supersonic flow),
and that the flow be tangent at the surface. To first- and second-order
accuracy, this tangency condlition is

R! at r

Py R(x) (3a)
B R(x) (3b)

With the velocity potential determined, the pressure coefficient is
given to second order by

(1 +y )R at r

Cp = -2fy - ¢r2 - (1 'MZ)CPXZ"'MECPXCPI'Z"‘{I_]: qu)r‘:& (b}

In the slender-body spproximation the first term in equation (1)
can be neglected, except insofar as it sppears in the distant boundary
condition. Similarly, for second-order slender-body theory, varlous
terms in equation (2) can be omitted (ref. 9). However, this simplifica-
tion 1s unnecessary here becsuse a particular integral of equation (2)
itself is known; and it would actually complicate the distant boundary
condition.

Resumé of First-Order Slender-Body Solution

Slender-body theory is & further simplification beyond linearization
that describes the flow only in the Immediate viecinity of the body - more
precisely, within a distance from the axis of the order of the local body
radius. It can therefore be extracted from the linearized solution by a
limiting process. Similariy, the second-order slender-body theory sought
here represents the first two terms of an asymptotic series, and can be
extracted from the full second-order solution.

For the first-order slender-body solution we adopt the procedure of
Keune (ref. %) and Heaslet and Lomax (ref. 5) as being simpler and more
physically appeeling than the methods of Fourler and Laplace transforme-
tion. The appropriate solution of the linearlized equation (1) that
vanishes far from the body is
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b
(- L F(£)ds s B = N1-M® for subsonic flow
2 2 2
8 N(x-£)Z +p3r2 .
o(x,7) ={ - (52)
x~Br
-f F(£)de 3 B = 'JP -1 for supersonic flow
e '\[(x'g)a'Bara (5b)

This may be regarded as resulting from & distribution along the axis of
the body of sources of strength proportionel to a function F(x) that is
to be determined from the tangency condition. Differentiating and inte-
grating with respect to x gives?

b -
- %Ea; f F(t)sinh — 3‘-5—5 de (6a)
8
CP(X,I‘) = B
x-Br _
- g% J[‘ F(&)cosh™ EE% ag (6b)
a

Then approximating asymptotically for smell r in the integrand (and
also in the upper limit for supersonic flow) gives, near the body,

b b
- %-a%j; F(&)sen(x~£)n g-lﬁﬁ-l- ag = F(x)n BX-2 Ea;£ F(g)sgn(x-ﬁ)lnlx-zldi)
Ta

3 [* 2(x-8) 4y - Br_3 [* -
- &L F(&)in ——%;5— ag = F(x)in F -5- EL_F(g)m(x £)ae (Tp)

X

¢(x,r) =

This is the result of Heaslet and Lomax (ref. 5).

Alternative forms of the integrals that are a great deal simpler for
either analytical or numerical evaluation were given by Schultz-Piszachich
(ref. 16). Excluding en infinitesimal neighborhood of the point x = &
from the range of integration, carrying out the differentiation indicated
in equations (7), adding and subtracting a logarithmic term, and then
allowing the excluded neighborhood to vanish leads to

1If the body has pointed ends (so that F = O there), the procedure
can be simplified, and 1t is only necessary to integrate by parts. How-
ever, we contemplate treating round ends also, at least in subsonic flow.
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Br 1 [PE(x)-F(8)
P(x)in NI + 3 l: Y at (8a)
o(x,r) =
Br *F(x) - F(£)
LF(.'}{)Zn m + \'é‘ —;—_—g—- ag (8b)

The superiority of these forms is clear if F(x) is & polynomial; then
the integrands in equations (8) are simply polynomials, whereas those in
equations (7) contain logarithms.

Imposing the first-order tangency condition of equation (32) now
determines the source strength F(x) in terms of the body radius R(x) as

F(x) = R(x)R'(x)

Hence the first-order slender-body solution has the form

9 = F(x)in r+06(x) (9a)
where

F(x) = R(x)R'(x) (9b)

1 b
B 1 [T E) -F(E) .
F(x)ln2 T + 3 l vy ag (9e)

a(x) =<
B F(x) -F(&)

kF(X)Zn 20ea) t L[{T ag (94)

The pressure coefficient on the surface of the body is given by

Cp_ = -2[F'(x)in R(x) +G'(x)] -R'Z(x) (10)
8
Second Approximation

The slender-body solution of equation (9a) is clearly & solution of
Laplace's equation in the cross plane, which is the Prandtl-Glauert equa-
tion (1) with the term (1 -M®)Q,, omitted (except insofar as it is
implicit in the boundary condition far from the body). This linear term
must therefore be taken Into account in the second approximation in addi-
tion to the nonlinear terms on the right-hand side of the iteration
equation (2). Hence the slender-body iteration equation is
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v
¢rr Y

1
= -(1- M2 )q)}‘._x +M‘2[2<Z-'2;— M +1 - M2>(qu>xx + 20, Py + q’rchrr]

(11)

A particular integral for the linear term on the right, which
vanishes far from the body, is given by 2

- $(1-¥)r2g,, = T(F - 1)r2(F"1n £ +6" -F")

? partlc?lar integral for the nonllnear terms is known to be given by
ref. 15 -

M
oo+ o ) )

=M2[(F'7,n r+G')<F 7,n'r+G+?'—§i MzM_le -%L.Fr;]

The complete secord approximation is the sum of these two particular
integrals, plus a complementary solution that will have Just the form
of the first approximation, equations (9)}. Hence the second-order
slender-body solution for the perturbation potential is

$(x,r) = (F+£)in r+(G+g) +:—lt(M2 -2 (F"in r+G" -FY) +

MZ[(F’Zn r+G')(F in r+G+NF)-%§:’ (12a)
where _ ) i
N==-n= z——;l }421\{21 (lgb)

Here f(x) 1s the second-order increment in source strength. Imposing
the tangency condition of equation (3b) determines it as

£f(x) = (1 -EME)FF'Zn R - M2NFF! + (1 -M2)FG' - MF'G ~

Ll 2 73 1 o
ER -t ~z ) (12¢)
This result can also be obtained by re'baining secondary es well as

leading terms of the expansions in any of the conventional derivations
of slender-body theory. If the Heaslet~Lomax method is followed, it is
necessary to differentiate and integrate with respect to x, as in going
from equations (5) to (6) , two more times in order to avoid divergent
integrals.

(1 -M2)R®=(F"in R+ G"
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Then g(x) is related to f£(x) in the same way that G(x) is to F(x):

- r
f£(x)in B +%f —-(-’Q——f-(-é—dg (124)

2N (x-a) (b-x [x - g
g(x) =¢
f£(x)in ey + ‘/«ﬂ-’-‘-}){—:?ﬂ ae (12e)
a

However, it willl be seen later that this formal result falls at round
ends. The proper expression for g for round ends will be given in
equation (40) for incompressible flow and equations (52) for subsonic
flow.,

On the surface of the body the expression of equation (4) for the
pressure coefficient can be simplified, using the tangency conditions of
equations (3), to

Cp, = ~2Bx, -R'2[1+ (2 -L{Z)cpxs] + (M = 1)oy 2+ WERIE (13)
Slender-Body Integrals

The second-order, like the first-order slender-body solution, is
seen to require only the evaluation of the "slender-body integrals®

blare) b = F(x) ~F(E) s
Ia{F( )}_ l k| ae (subsonic) (1ka)
Jx{%( )}- U/QCF(X) F(g) (supersonic) (1hv)

and theilr first three derivatives with respect to x, which involve
integrals of the same Torm:

b' _ Ft(x)-F'(¢) F(x) F(a) + E(b) - F(x)
I, _l; ot Qg+ s (15a)

etc.
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Note that only a single integral is actually involved, since the subsonic
one is related to the supersonic one by

IE{F(X)} = J{:{F(x)} + I F(x)} , a<x<b (16)

However, 1t 1is convenlent to list both,

As with the analogous airfoil integral of subsonic thin-wing theory,
these integrals can be evalusgted analytically for a wide variety of func-
tions. A short teble is given in appendix B.

Transonic Approximation

It will be seen in later examples that the analytic form of the
second approximation is rather complicated even for simple shapes. A
further approximation that yilelds considerable anslytic simplification
and & remarkably elegant result is that of the transonic small-disturbance
theory. In that approximation one retains of the nonlinear terms only
the one that is dominant near Mach number unity, 80 that the full equa-
tion of motion is simply

(1 -M2)¢xx+¢rr+%i = (r+1)8.8. . | (17)

In plane flow the accuracy is improved by keeping a factor M2 in the
right-hand term, but a test with the exact solution for cones in super-
sonic flow suggests that the advantage does not persist in axisymmetric
flow. The effect of retaining the M2 is simply to change (y +1) to
M2(y +1) in all that follows.

If one attempts to solve this simplified equation by ilteration on
slender-body theory, the second approximation is, from equations (12},

r+l

#(x,r) = (F+£)in r+(G+g)+2(M2_ ] F(F'in r+G') (18a)
where )
F = TR | (18b)
N A S
= 2(M2 - 1) Fr ' (18¢)

and G(x) and g(x) are related to F(x) and f(x) by equations (9c) and
(94) and (12d) and (12e).
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This result can be simplified because the two second-order terms
in In r cancel. The second-order increment in velocity potential is
thus found to be a function only of x, given by

F( 2F(§ ' FL)F( ) F(o)F(x) 1 F3(a) 1F3(0
h(l-Mz) [f T w(eap s Hlalln) RO L ) S EO) ] . M2
8a = 60 = (192)
2(M2-l) [f J.’E)_Fﬁ_ Fr(e)ae .,._(E-E.El] ,  M>1 (19%)
L

Here a correction for round ends that will be derived later (egs. (52))
has been included in the subsonic case as the last two terms in the
bracket of equation (19a). A corresponding correction should probebly
be found also for the supersonic case; if so, equation (19b) does not
apply to a round nose snd the last term might as well be omitted.

This incrementsl potential msy be regarded as representing a plane
wave standing normel to the body exis whose amplitude is independent of
radius within the slender-body aspproximation (although it of course
attenuates at distances large compared with the local body radius, where
that approximation fails). It can be shown that this result holds also
for bodies of general cross section, where F(x) in equations (19) is
A'(x)/2n if A(x) is the cross-sectionsl area.

The surface pressure coefficient is given, in the approximation of
transonic small-disturbance theory, by

c -2¢. -R'® (20)

Dy
Near round ends In subsonic flow the first-order pressure coefficient is
infinite 1like x~%, and the second-order increment like x~2 (so that
neither is integrable for drag). The seme is true for & round nose in
supersonic flow (except that, as Just remarked, the second-order increment
given sbove may not be even formally correct).

If round ends are excluded, the drag in supersonic flow is integrable,
and the second-order Increment is given by

£zD b) F ) o, _
%—_mea 211 [F(b) f F1(g)at

b b
l_. FX -F ) ? 1
5 ££ —r: Frx)F'(g)de dx] (21a)

Just as in plene flow past an airfoil, this mey be either positive or
negative, according as the body is fatter near its nose or tail. For
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if round tails are also excluded, setting F(x) - F(-x) shows that
reversing the direction of flow changes the sign of the drag increment
of equation (21la). This means, in particular, that the supersonic drag
increment is zero for & body with fore-and-aft symmetry.

The corresponding expression for subsonic flow (with round ends
excluded so that the drag is integrable) is

_9_22_5 7'+lff F(X) F(g) F'(x)F'(E)dE dx (21b)

1
5 A%

This differs from the second term in equation (2la) only in having the
absolute value signs. As a consequence, howgver, it can be shown that
this drag increment is zero in conformity with D'Alembert’'s principle.

Oswatltsch and Berndt have shown (ref. 17) that the transonic small-
disturbance approximation together with the slender-body approximation
implies a similarity rule for surface pressures on affinely related
axisymmetric bodies of thickness ratio T, according to which

c
—1,—:-2-+zn(1-2|1-M2I) = P[UMIZI_T%Z"] (22)

Here P is some function of the transonic similarity parameter

(M2 -1)/(y +1)T3. The present theory gives the first two terms in an
asymptotic expansion of the function P for large values of its
argument.

EXAMPLES IN SUPERSONIC FLOW

Restrictions on Body Shape

It is implied in the slender-body approximstion (as in linearized
theory) that the velocity disturbances induced by the body are everywhere
emall. This imposes serious limitations on the smoothness of the body,
even in the first approximation. Thus for bodies of revolution not only
must the slope R' be small and continuous, but the curvature R" as
well., Supersonic noses must be at least p01nted (R small), and
superso?i% tails snd subsonic noses and tails must actually be cusped
(R":Oo

It is well known in thin-wing theory that the conditions for
linearization mey be violated locally without destroying the validity

S3These restrictions are somewhat more severe than those suggested
by Ward (ref. 21). He permits discontinuities in curvature and pointed
subsonic ends, but it is readily verified that these both lead to
Jogarithmically infinite surface pressures.
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of the solution as a whole. This is true also of the first-order slender-
body approximation. One can permit discontinuities in curvature and even
slope, and pointed and even round subsonic ends, provided one atiaches no
significance to the result close to the resulting singularity in pressure,
or subsequently corrects the sclution locally by techniques that have been
developed for discontinuities in slope in supersonic (ref. 18) and sub-
sonic flow (ref. 19) and for subsonic ends (ref. 20). (Round supersonic
noses can probably also be permitted, and could be corrected locslly if
the exact solution were known for supersonic flow past a paraboloid of
revolution. )

In the second approximstion of slender-body theory (Jjust as in thin-
wing theory) the restrictions become more severe, and the remedies cor-
respondingly more complicated, and it 1s no longer alwsys true that the
formal solution is correct except locally. These difficulties are
greater for subsonic flow because not only are the bodies of interest
usually blunter (round noses being the rule), but also the restrictions
are greater (pointed noses being excluded, whereas they are admitted in
supersonic flow since no stagnation points sppear).

Consequently, application of the present theory to examples of
subsonic flow will be postponed untll nose corrections have been dis-
cussed. To illustrate the theory, a few examples will now be given for
supersonic flow. No difficulties appear if the ends are pointed, the
meridian curve is elsewhere analytic, and one does not inquire too
closely into the details of the flow near a pointed tail - where the
flow is actually subsonic and, in any case, the real flow is determined
by viscosity.

r 7/
/
Cone . //,/
M
Consider & cone whose slope ~ > ¥ X
is & (sketch (b)), so that the \\ ‘
body is described by R = dx. \\
With the origin of coordinates at \\
the vertex (2 = 0), the slender- :
body potentisl of equations (9) Sketch (b).- Supersonic flow past
is cone.
o(x,r) = 6EX'<?n §£~+%> (23a)

Then equation (12c) gives

fx) = -54x[(2M2 -1)in %+M2N+M2 +%] (23b)
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and equations (12) give as the second-order perturbation potential

d(x,r) = 83 <‘Ln 2L 1 )ev%x {Mz'l, 2 Br [(2M2 1) 2 %]Qn Br+1>

ME(N +1) ~ th 62x2 -5

1,2 82x2

(23c)

The surface pressure coefficient is, from equation (13),

2 . 4| 2p2y2 2 - 2 13 i
Cp, = 2(2 in 1>+a [313 1n® == (52 1_)zn ]38+2n112N+lb M2+2]

BS .
.08 .
First-order slender-body -:---- -
Second-order slender-body —— —~—
.06 |- Full second-order _—
¢ Exact (ref.22)
Py

o 1 1 1 g Tty
] 3 5 7 9 1] 13
M

Sketch (c).- Pressure on cone of 5°
semivertex asngle (y = 1.405).

First-order slender-body
Second-order siender-body

Full second-order
s Exact (ref. 22)

........

o) 1
I 2

[

M

Sketch (d).- Pressure on cone of 15°
semivertex angle (y = 1.L05).

(234)

which is the result first given by
Broderick (ref. 8).

Broderick has compared the
first~ and second-order slender-
body solutlons with the exact
results (ref. 22) for various cone
angles. Two cases are reproduced
in sketches (c) and (&), and the
second approximation is seen to
yield considerable improvement for
moderate cone angles at speeds
below the hypersonic range. Also
shown are the results of the
second~order theory which does not
involve the further approximation
of slender-body theory (ref. 15).
The slender-body simplification is
seen to reduce the numerical sccu-
racy at high Mach numbers. The
reason is that, roughly spesking,
linearized theory and its second-
order counterpart assume only that
the thickness ratio T 1is smell,
whereas the slender-body approxims-
tion implies also that Bt is
small (ref. 23). The latter is a
more serious restriction at Mach
numbers appreciably in excess of
JE. In the subsonic renge, on the
other hand, B camnot exceed 1, so
that the slender-body simplification
does not significantly reduce the
numerical accuracy.
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The corresponding result in the transonic small-disturbance approxi-
mation is found from equations (9) and (19), or simply by discarding all
second-order terms in equations (23) except those involving N and set-
ting M = 1. The result for surface pressure coefficient is, in the
similarity form of equation (22),

Cp
_ _ (y +1)82
_s +2 1n(Bs) P[(y 15 ] (2 tn 2-1) 4+ X—F"— = (2ka)

This series has been extended to a third approximation in unpublished
work, giving

—C:—Z+2 in(B8) = (2 in 2-1)+1L§;-&2+ _lﬂg >[(7 +1)8 T (2k)

Exact numerical solutions of the transonic small-disturbance problem have
been calculated by Oswatitsch and Sjodin (ref. 24). The comparison of
these results shown in sketch (e) gives an idea of the extent to which
the present theory can penetrate 20
into the transonic range. Exact (ref.24)

As indicated in sketch (e), s b
detachment of the bow shock wave
and attainment of sonic flow Just Cp, +ln(M2)82
behind the shock are both associ- &
ated with a specific value of the 10
transonic similarity parameter.
However, this is not true (in con-

trast to plane flow) of the "upper 5

critical Mach number" at which

sonic flow is attained at the sur- *_—e 'gggf: i‘esff%?ﬁ\? &?.Z,{ (138)
face. This means that the limit o \ . ) ’
of convergence of the small- o 2 4 6 8
disturbance series (such as M|

eq. (2ib)) cannot be associated (7482

with the first appearance of a Sketch (e).- Correlation by transonic
subsonic zone in an otherwise similarity rule of pressure on
supersonic flow Ffield. cone; ¥ = T/5. '

Pargbollic Spindle

The analytic form of the second spproximation grows complicasted for
shapes other than the cone, except in the further approximetion of tran-
sonic small-disturbance theory.
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r The analytic complexity of the
T Y Y, full second approximation will be
¢/ 11lustrated for the spindle formed
M / by revolving a parabolic arc
—_— x (sketeh (f)). Let it be of unit
length, with semivertex angle &
N (so that its thickness ratio is
N 5/2), and choose the origin of
Sketeh (f£).- Supersonic flow past coordinates at the nose. Then the
parabolic spindle, body is described by B

R(x) = dx(1 - x) (25)

The first-order slender-body solution of equations (9) is
v = Szx[(l -x)(1-2x)10 B 1 g x el x2] (26)

The second approximation is found using equations (12) together with the

integrals of sppendix B. Rather tediocus computation gives as the surface

pressure coefficient

Cp, = 52[2(1-6x+6x2)1n 55-(12__—’:)-- l+161-22x2] + _
5"{2[(1-2!(2 )+6(714"‘-h)x(1-x)-30(51~12-3)>€(l-x)z] [Lz(x)+%1n2 (1-:)};332[1-203:(1-::)4-72::’ (1-x)=:lzn= ?ﬂ%ﬁ +
(-5 42039824 (335-30F 212(2T-333 <A (9918 o gy +
[6(71F-h)(1+2x)-5<5m=-3) (1-25!-3h?+25x5)](1-x)1n(l'X)+2‘tF 1=15x(1-x)+4Tx2 (1-1)2] +
(—1,9 't +%>+ [12(7}52-1»)1:1 = +21-91 {18(19-32112 )in %‘1-3%11\12 - 222}8+
[220(5#-3)7.:1 2r65-11 Ma]xa{125(3-5142)2n 2. 08 e -_2'%6-1—'}‘} (27a)

Here Lp(x) is Euler's dilogarithm, defined by _
= ‘n X - ' h : :
o) = ) .- [TREIM G [Tt (275)
n=1 o o g . o £-%

Keune and Oswatitsch (ref. 25) have encountered this function in their
integral equation theory for slender bodies of revolution in transonic
flow. They give a short table and references to further tables of which
Powell's (ref. 26) is the most useful. In sccord with the second-order
similarity rule (ref. 27), the surface pressure coefficient has the
general form

Cp, = 12P(X;BT)+T4[PJ_( y+MEp () + (y+1) g—: Pl )] (282)

II’pu
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where T 1s the thickness ratio. More specifically, it has the form
appropriate to smooth slender bodles of revolution

Cp, = (P,In T-FPé)'*T4[(P11'*M?P21)ZHZT*'(P12'FM?P22)zn T
Dya Pas 7 B2 Pa

Enormous simplification results from the approximation of transonle
small-disturbance theory. The second-order effect is then given by
equation (19a) as :

4
A2¢=-721M28_1< -—sz %axs wxﬂ—x) (29)

Hence second-order effects alter the pressure coefficient at any point
by

A Cp = ~2A8, = M7+_?L' 5%(1 - 15x + 62x2 - 9hx3 + bTx¢) (30)

which is plotted in sketch {g). Adding the first-order contribution
gives, on the surface,

C}PS = 82[2(1-6x+6x2)1n -l+l6x-22x2]+

Iaer)
E‘g{% @)4[3 -3)+(2x-l)2+1¥7(2x"l)4] (31)

Here the second-order term has been rewritten to make clear that it is
symmetric sbout the middle of the body, as indicated in sketch (g), and
so contributes nothing to the drag.

L.O—
Ay GCp
Y+l
MZ| 8t 5L

o . LA L N I
NN
- =

Sketch (g).~ Second~order increment.
in pressure on spindle.
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Sketch (h) compares this simple result with Drougge's measurements
of pressure on & parsbolic-arc spindle of thickness ratio 1/6 at M= 1.15
(ref. 28). It is remerkeble that the first and second spproximations give
successively more accurate values in the region of subsonic flow, which is
of considerable extent because the free-streem Mach number is somewhat
below the value (1.18) for detachment of the bow wave.

M=LI5
6 — < T
e —
Sonic point for isentropic flow
N\, Sonic point behind normal shock
5 -
P
pt
4 - N
First-order theory
Second-order theory
3 | | i | i
o) 2 .4 6 8

Sketch (h).- Pressure on parabolic spindle with T = 1/6 at M = 1.15.
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SUBSONIC FLOW

It has already been pointed ocut that only under rather severe
restrictions on body smoothness will the second-order slender-body solu-
tion be uniformly valid over the entire surface of the body. In particu-
lar, it fails at lesst locally near stagnation points, and these can
scarcely be avoided in practice for subsonic flows. We therefore con-
sider to what extent the formal solution bresks down - and how it can be
corrected - for subsonic flow past a body that has sharp (conical) or
round, rather than cusped, ends, but elsewhere satisfies the smoothness
requirements. (Violations of the restrictions elsewhere than at the
ends - for example, at discontimuities in slope - could be treated by
analogous methods; see refs. 18 and 19.)

Failure at Subsonic Ends

Just as in plane flow (ref. 20) it turns out that the formal second-
order solution for a body with stagnation points may have one of three
degrees of velidity:

1. Valid except near stagnation points where it predicts
infinite surface speeds

2. Invalid everywhere, but finite except near stagnation
points

3. Infinite everywhere

These three cases are successively more serious (and are accordingly
associated with successively greater blunting), except that the second
is more insidiocus than the third because it gives no warning.

The distribution of these three cases with respect to nose bluntness
and Mach number is compared in the following table with the corresponding
results for alrfoils., A regular trend is apparent, bodies belng at least
as critical as airfoils, with the one exception of sharp noses in subsonic
flow. There, however, the difficulties of case 2 do arise in the various
components of the solution but happen to cancel in the net result. (Fur-
thermore, the corresponding airfoil problem could be put into case 1 by
manipulating, by partial integration, the Integrals involved in the
second-order theory.)
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Bodies Airfoils
Case
(using @) Using 0 Using V¥
1. Valld except near| Sharp, M = 0| Sharp, M =0 gEZig, ﬁ ; g
1 = J

stagnation points { “Shaxrp, M> 0| Round, M = O Round, M = O
2. Invalid every-

where, but finite _

except at stagna- Round, M = 0| Sharp, M> O | Round, M > 0O

tion points
3. Infinite

everywhere Round, M> O} Round, M> O

lExcept for this one case, placement in the first category has
been definitely established by actual worked examples (using the
Janzen-Rayleigh method). In this exceptional case, the placement
18 based instead on the absence of algebraic singularities, which
might have to be modified by the source eigensolutions discussed
below, from the second-order solutlon given below for the spindle.
It would be well, however, to confirm this classification by
carrying out the Janzen-Rayleigh solution for a conical tip.

In the first case, local failure occurs because the true speed is
proportional to 2z€ near a sharp nose and to ,z-fe2 near & round nose

(where =z 1s the distance into the nose and ¢ is proportional to the
body thickness), but the slender-body expansion forces these into the
formal seriles : -

z€ = 1+¢€2in z2+0(e%)
2 1 e2
=1 -= & 4
—— 1 2Z+o(<-:)

which are not uniformly valid near 2z = Q. Recognition of this scurce
of the singularities permits one to formulete simple rules for rendering
the formal solution uniformly valid, with the aid of the correct solu-
tion for some simple body having the same nose shape (refs. 20 and 13}.

In the second case listed, the over-all failure results from singu-
lar eigensolutions -~ extraneous solutions that satisfy the second-order
equation and the slender-body boundary conditions. They enter because
of the inexactness of the slender-body tangency condition near the nose,
The eigensolution is a point source located at the stagnation point if
one works with the velocity potential (and a dipole if one works with
the stream function). In plane flow there are at least three simple
ways to exclude false eigensolutions, but unfortunately none of them is
applicable in sxisymmetric flow. First, the source elgensolution can be
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excluded in plane flow by working with the stream function (which imposes
a condition on mass flow that would be vioclated by an extraneous source).
However, Stokes'! stream function, which should exclude source eigensolu-
tions in the same way for axisymmetrlic flow; fails for other reasomns to
yleld the correct second approximation (ref. 29). Second, the source or
dipole eigensolution can simply be deleted as inadmissible in plane flow,
and the remainder is the correct solution. In axisymmetric flow, however,
the true slender-body solution may contain a term indistinguishable from
an eigensolution. Third, there exists a similarity rule that relates
surface quantities on a single plane airfoil in subsonic flow to those in
the corresponding incompressible problem (ref. 13), which is free of
elgensolutions. No such rule exists for bodies of revolution, however,
nor does the difficulty disappear at zero Mach number., Indeed, it is
only for round noses in incompressible flow that elgensoclutions arise
(see preceding table); and they can therefore be handled by comparison
with the known solution for incompressible flow past a parsbolold of
revolution.

In the third case listed, divergent integrals arise in the second
approximation. They can be assigned a finite interpretation only by
solving the problem by another approximation - either the Janzen-Raylelgh
expansion in powers of M?, or the full second-order theory without the
slender-body approximation., The Janzen-Rayleigh solution is wniformly
valid near the stagnation point, and the second-order slender-body solu-
tion can be extracted from it using the second-order similarity rule
(ref. 27). The full second-order solution involves source eigensoclutions,
but they can be eliminated by requiring conserveation of mass within a
large contour that lles everywhere far from the region of nonuniformity
at the nose. (This cannot be done with the slender-body solution because
it 1s not valid far from the body.) Both these procedures have recently
been carried out for the parsboloid of revolution, with identical results
(ref. 14). It will be shown here how any other round-nosed body can be
treated with the ald of that solution,

Sharp Ends - The Parabolic Spindle

Sharp~ended bodles in subsonic flow have stegnation points, but the
formsel second approximation, like the first, is correct except very near
the tips (case 1 of the preceding table)}, It can be corrected even there
by simple rules (ref. 20). However, the region is so minute (being of
exponentially small order in the body thickness) that the correction is
usually of no practical significance and will be ignored here.
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r As an example, consider again
T the parabolic-erc spindle. Because
s symmetrical bodies in subsonic flow

----- -~ induce symmetric disturbances, 1t
t 4> is convenlent to choose the origin
at the middle (sketch (i)). The
spindle of thickness T is
described by

Sketch (i).- Subsonic flow past
parabolic spindle.

R(x) = 7(1-x2) (32)
The slender-body solution of equations (9) is

,( -2
2 lBrx "'3""1_1'}'52}

3 (33)

o = sz[E(l-xz)Zn

The second approximation is found from equations (12) and eppendix B.
The result for the streamwise velocity component on the surface is

u 2
= = 1+12(1-3x2 ) 2 1 - 3>+
U ( ) " pra1-x2
14+x

74{;32(5—)-&2}{2#5}:4)(‘;'22‘ —% n2 E-‘- 2 1n? B%»J?;;:E)-F

2M2(1-12x2+15x4)<% 2 2 —’l‘—z->+[15(3-5M2 )xz-(27-1l-lM2):lx m 2 -

22 5L y2 ). (271-325M2 ) BH 5= -5 M Jx*(in +
[ 2 "2 2 2 BTN 1-x2
(.22 eiia) (22 222 1430 )2+
10k9 5629 2 ) 4}
5~y MR o

The pressure coefficient can be calculated from equation (L), and has
agein the form of equations (28). The maximum velocity, which occurs on
the middle of the spindle, is glven by : : :

Umex 2 2 (55 6L 2
< = l+r2<2 in BT-3>+T4[10B21n2 Br -<2 -3 M2 hin BT+

1 ey 43T 293 e z]
12(5 ™) +=5- -5} ¥+ 3 _(35)
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Again, enormous simplification results from the approximstion of
transonic small-disturbance theory. The second-order effect is then
found from equations (19) to be the same in subsonic as in supersonic
flow. Tt is therefore given by equations (29) and (30), with x
replaced by (l-+x)/2 because of the difference in coordinates, and €
by 27. Hence the surface pressure coefflcient is given by

ry+1
- M2

Cp = 21’2[(3;{2 ~-1)}2 in T4(3 ~ 3hx2 + bTx4)

e Ml
(36)

The spindle in subsonic Flow has been treated in the transonic
small-disturbance approximation also by Keune and Oswatitsch (ref. 25),
who solve an approximate integral
equation numerically, Their result
for the perturbation velocity on a
1k.6-percent-thick spindle at
M = 0.90 (which is nearly the
critical Mach number) is shown in
sketch (J) to compare reasonably
well with the present result.® 1In
particular, their curve crosses
that of linearized theory twlce on
each half of the body, as the
second~order solution does
(sketch (g)).

.08
Second-order theory

'3/<:Keune &

Oswatitsch

04

u_
TR

0 4I

.S

-04

Drougge (ref. 28) has tested ~08

a parsbolic spindle truncated by
a support sting (cf. sketch (h)).
If the base lies at x =D

-2 [—

(sketch (1)), the Ffirst-order
slender-body solution gives

1(b-x)

Sketech (j).~ Pressure omn parsbolic
spindle with T=0.146 at M = 0.90.

' 32
+% (1+1b2)-3(L-b)x-11x2+b %_bx:,

(37)

The algebraic singularity at the corner (x = b) should be corrected by
the techniques of references 19 and 20. In the second epproximation the
corner introduces divergent integrals (Just as a round nose does). This
difficulty has been avoided by using the second-order increment for the
complete spindle (the second term in eq. (36)), which should be a

Cp = 21'2[(3::2 -1l)in B3 (1 +x) (1 - x)®

“Keune and Oswatitsch solve equation (17) with (y +1) replaced by
M*(1-M2)/ (1L -M*), where M¥® = (y+1)MB/[2+ (y -1)M2]; this change has
therefore been made also in equation (36) in calculating the curve in
sketch (J).
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satisfactory approximetion away from the corner. The result is compared
in sketch (k) with_the measured pressures at M = 0.85, and the second-
order terms are seen to improve the agreement.

(o]
M= .85
\ el S v~ —
7k . ]
(o]
r
Py
6 |
—_—
Second-order fheory—/
.5 | | | ]
o] 2 4 .6 .8
X
1
Sketch (k).- Pressure on parsbolic spindle with T = 1/6 at M = 0.85.

reJ2px

Incompressible Flow Past Parsboloid

Consider now the case in wvhich

X elgensolutions may invalidate the
second. gpproximation everywhere.
According to the preceding table,
this case (case 2) can occur only
for round noses in incompressible
flow. We consider, therefore, first
the prototype of round-nosed bodies,

Sketch (1).~ Notation for e paraboloid of revolution. With the
paraboloid of revolution, - nose at the origin, it may be
described by y = JEEE, where p is
the nose radius (sketch (1)). Although the infinite paraboloid has
properly no thickness ratio (or is an ellipsoid of zero thickness ratio),
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Jo formally assumes that role. From equations (9) the first-order
slender-body potential is found to be, aside from an irrelevant constant
(which includes the "infinite constan i -(p/2)in b of eq. (9c))

9=%p L (382)

Then from equations (12) the formal second approximation is found to be

g

Here the second-order term is actually incorrect. The exact perturbation
potential for the paraboloid in incompressible flow is known (e.g., from
separation of variables in parsbolic coordinates) to be

o 1 {j@g o vre-(x- p)]

= &= 2.1 _E r2 3. a2 4
50 ln—+3 >+0(p p2r2, prt)

1 =
sowmI- 2oL (38b)

]

©
I
o=

(39)

Thus the formsal solution of equation (38b) is seen to be in error by a
term p2/4x, which affects the pressures everywhere.

This term is an eigensolution for the slender-body problem, because
it satisfies trivielly the equation o¢..+0Q /r = 0 without affecting the
slender-hody tangency condition of equa r%ion (3a). Moreover, it has the
proper behavior at infinity, because it 1s in fact the slender-body
representation of a point source located at (or within a distance of
order p of) the origin. Thue the exact perturbation potential for a
point source of strength pa/h located on the axis at x = kp 1is

¢ = % p2 = - EE%-O(p3 p2r2)

Jx-kp)2se2 ¥ x

Alternatively, the eigensolution may be regarded as representing a
second~order uncertainty in the location of the nose. For replacing x
in equation (38b) by x - (p/2) ylelds the correct result of equation (39).

Eigensoclutions at Round Ends in Incompressible Flow

The extraneous eligensolution arises in the formal solution for the
paraboloid because of the inexactness of the tangency condition near the
nose; consequently, Just the same error will arise for any other body
having a round nose of the same radius. That is, the formsl second-order
slender-body potential will be too small by an amount
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. _Pa®
28 = i x-a)

where p, 1is the radius of the nose, located at x = a. A corresponding
error will arise at a round rear end, where the eigensolution is the
slender-body representation of a sink rether than & source. Hence, the
formal solution of equations (12) can be corrected by calculating g(x)
not from equation (12d) but from

2
=f(X)7,Il 1 f __(_.L.-_fS.Ldg }+ _.EE'__.__p_b_

2N(x -a)(b -x) 2 {x - &] x-a b-x

g(x)

(o)

This modification glves a solution that is valid to second order
except within & distance of the order of the radius from either round
end, wvhere singularities remain. That is, removal of the spurious
eigensolution by means of equation (40) reduces the difficulty from
case 2 of the preceding table to case 1. For exemple, the surface speed
on a parsboloid of revolution is found, either from equetion (39) or
simply from Munk's rule (ref. 30) that the speed on any ellipsoid sub-
Jected to incompressible flow along an exis is the projection of the
meximum veloclty, to be

v [x +2(Eo/2):,1/2 (1)

Expanding this formelly for smell p yields

L3

> (41b)

’?’ul‘?\a

NID

i

2 -7
=1

u)

and this 1s also the result of the present theory, the first two terms
being the usual slender-body result, and the third the second-order
increment after removal of spurlous eigensolutions. The remaining
singularities are such that even in first-order theory the integrsl for
drag calculeted from surface pressure is divergent (though this is not
a serious difficulty because the drag is known to be zero).

Rules for Rendering Solution Vealid Near
Round Ends in Incompressible Flow

The singularities remaining at & round nose can be eliminated, and
a uniformly valid approximation obtained by applying simple rules to the
formal solution. -Derivation of these rules requires a knowledge of the
exact solution for some body thet matches the one under consideration
near its nose. The parabolold of revolution is the prototype of round-
nosed axisymmetric bodles. It was shown in reference 20 that the ratio
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of the exact solution for the paraboloid (eq. (4la)) to its formsl series
expansion (eq. (41b)) serves as a multiplicative correction factor for
any round-nosed body. This rule renders the solution correct to second
order® for uncambered airfoils (to which it also applies), but only to
Pirst order for bodies of revolution.

A second-order rule Ffor bodies was derived (ref. 20) by considering
the exact solution for an ellipsoid (or hyperboloid); which matches the
nose more closely than does a pareboloid. It should be pointed out that
in this case one cannot simply use the ratio of the exact solution to
its formel expansion because thls would introduce a spurious stagnation
point at the remote end of the ellipsoid. What one actually requires is
the exsct solution for & semi-infinite body that matches the nose to the
required order, and this can be extracted from the solution for the
ellipsoid.

The result is that for a body of revolution having a round nose at
X = 0, described by

2 = R3(x) = 2px - Bx2+. . . (k2a)

1"

the formal second-order slender-body solution "q," for surface speed
is converted into s uniformly valid second approximation G, by the rule

1" 1
4 1
1 - ?\2> s ?\ -

1.1
L qu +A

T _ 0.3
T 2% ;B (h2b)

where "q," is the first-order part of "g,".

A body with two round ends can be treated by applying this rule
twice, shifting coordinates so thet in equations. (42) x 1s always meas-
ured into the end. The result can be simplified somewhat to the follow-
ing. For a body having round nose and tail of radii o, and Py located
at x = a and x = b:

1t

"ql
U

%: 1 l:qz +%_(7\a+7\b) "Jé' (7\9,'7\};)2] s (¥2c)

Jol+ng)LT+np) b U

o)
__Pa 3 __ P .3
M= Glx-a) L Bas MTzmox) & B

Corresponding rules for treating surface pressure directly have been
glven for airfoils (ref. 13), and could readily be deduced also for bodies,

SAs pointed out in reference 20, the order of terms is counted in
such a way that disturbances in velocity or pressure are always of first
order. Thus a first-order term is only of O(72in T) near the middle of
a slender body, but is 0(1) near a stagnation point.
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Rules for treating sharp ends have been given In reference 20; but, as
discussed in connection with the spindle, the region of nonuniformity is
so small as to be of no practical significance.

r Example: Incompressible Flow Past
%T Ellipsoid
Jﬂ%»— s —— X Consider a slender ellipsoid

| of revolution in incompressible
flow. With axes chosen as shown in
Sketch (m).- Ellipsoid of revolu- sketch (m), the ellipsoid of thick-

tion in subsonic flow. ness ratio T 1is described by
r = R(x) = Wl-x2 (43)
Equations (9) and (12) give
F(x) = -m2x )
a(x) = 12x<1n 2= -1) ? (bhs)
£(x) = --r*(ln %+-32=>x )

The radii of the nose and tail are p_ = p, = T, so that equation (40)
glves

k(x) = T"'Gn %+%>x<'&n 218 -1 ) -5 e S

Then from equation (12a) the second-order slender-body solution for the
perturbation potential is

2.1 2N1-x2 1 3=x2 1 ._x
4 - 72[1+’2<m -r+e>}"<m o l>+_4 R e 2 1
(bhe)

It can be verified that this is the asymptotic expansion, to this order,
of the known exact solution for flow past an ellipsoid.

The streamwlse velocity component and resultant speed on the surface
are found to be
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(45a)
92 _ 2.1 1 2.1_1 2_3.
—U—-l+'r2l:7,n_r 2<l+l-x2 ]+T4[Zn2_r 5 T2 o =-3
1 3_1
I8 l-x2+8 (l-xz)é] (45D)
Applying the rule of equation (42c), with Pa b= By =By = T2, gives

the uniformly valid result for surface speed (or pressure coefficient)

%= T - l+72£7;zg.-15l_->+—r41n-2-<1n ?.-%2/2 (1)
2ola-D)t G-

1412 sech™tr-N1-12
-1
,./ -2 .
1-72 -12gech T (16b)

<2 1/2
<l+1'2 T _x2>

As an extreme test, the approximate and exact values are compared in the
following teble for an ellipsold of thickness ratio T = 1/3:

The exact result is

STr
|

+x o} 0.k 0.8 0.9 0.95| 0.98|1

q/U|1.122 | 1.110 ] 1.025 | 0.92% | 0.788 } 0.58%4 | O
g, /uf1.11k|1.103|1.018| .918} .782| .580|0

Subsonic Flow Past Parabolcoid

The remaining case to be disposed of is that of subsonic flow past
a round nose. This is case 3 of the table on page 18, in which the
formal second spproximation leads to divergent integrals. This will be
illustrated for the parsboloid (sketch (1)); and comparison with the
known correct solution will again provide appropriate corrections,
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The first-order slender-body solution for the parabolold is found
to be independent of Mach number, so that it is given by equation (38a).
However, the potential is indeterminste to within an additive constant
which was dropped there but must now be retained for purposes of the
comparison, Hence the slender-body potential 1s written to lnclude an
arbitrary constant X as

0 = o} 10 Z4x) (17)

In the second approximation, equation (12c) gives as the increment
in source strength

£(x) = - %sza (48a)

L | nd

and difficulties appear because this is not integrable at the nose. The
function g(x) of equation (124) may be written formally as

g(x) =%MQ Exi in ’-l-xa f d-§> (’4-81))

If € 18 here regarded as small, all difficulties have been concentrated
into an integral over a short portion of the nose. The integrasl diverges
so that it is meaningless as it stands, nor can any a priori significance
be agsigned to it as a finlte part. The proper interpretation is rather

to be found from comparison with the known solution.

The formel second approximation of equatlion (12a) thus becomes
- Ly X)L g2, X2
¢‘9<K 27’nr2>-85px2+

1 hxt 1 €4
EM2 2[ < 1n; 5 In B2er4+2n 2K+2/; —é)'i%] (48c)

whereas the correct result has been shown to be (ref. 14), aside from an
irrelevant constent,

I 2px 2, 2"% 20X o 3p 2X >-_p_]
@ .2p7,n r2+8B x x2 hMZp[_ in r2+ 'LnBr+n =

(49)

These two expressions agree if the divergent integral 1s interpreted
sccording to
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tae ﬁa) 8pe
£ ?—QF +1in B2+J-I-K (50)

Eigensolutions at Round Ends in Subsonic Flow

Consider now the general case of a body having a round nose of radius
Pg &t x =a and a round tail of radius at x = b. The second-
order increment to source strength f(x) will consist of a regular func-
tion f£u(x) plus the singular terms

2
B - L M2<b0_bx-xp_az> (51)

€ .
These glve a divergent integral f dg / £ at elther end of the body.
o

Each of these integrals can be interpreted according to eguation (50) in
terms of the corresponding radius Pg OT pp, and & constant K, or K
that can be determined from the first-order solution. The result is
that in place of equation (124), the function g(x) is given by

_ B L PP (x) - £, ()
g(x) = £(x)in NEEDIES +3 l - ¢ at +
1 pa2 [ /B2 8pg (x - a)
5l o -n)rm B e |-
2 /g2 8oy, (b ~x)2
—bp;Dx [2(51—5 -n>+1n _—_gg(b mpy "')'['Kb]} (522)
where
2
fo(x) = £(x) --1-'- %_xp_a:) (52p)
—11mric-()iz(-)] (52¢)
Ka—x-»a._pa X)+5 n.x a c
K = lim|- L a(x) += 1n(b -x)] (52d)
b x-+bl. Fp 2

As M tends to zero this reduces to equation (40).
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As in incompressible flow, this modification renders the solution
valid to second order except within a distance of the order of the radius
from either end. (Case 3 of the table on page 18 has been reduced to
case 1.) The surface speed again contains singularities like (x -a)~%
in the first-order terms and (x -a)™2 in the second-order terms (cf.
eq. (¥1b)). These can be eliminated, and the solution rendered uniformly
valid, by a rule corresponding to equations (42)., Derivation of the
second-order form of this rule mskes use of the formasl solution for the
ellipsoid, which must therefore be found first.

Example: Subsonic Flow Past Ellipsoid

Consider subsonic flow past the slender ellipsoid of revolution of
sketch (m). According to equations (9), the first-order source strength
F(x) is unchanged from the incompressible value of equation (L4ka), end
G(x) is modified only by insertion of a factor B, so that -

P(x) = -m™x

72x<1n ____E-JEB-_:@- - l) 23e)

]

G(x)

The coefficients of the constant terms in G(x) at the ends are, from
equations (52¢) and (524),

¥

Bquation (i2¢c) gives as the formal second-order increment in source
strength

(53c)

= - 2 1) - |4t pBet X
f(x) = T4x[(2M? 1)in BT;%M?(n 1) 2]-+2 M T
The quentity in brackets is the fx(x) required in equation (52a), and
the remainder is the singuler terms of equations (51) and (52b) that
lead to divergent integrals. The integral in equation (52a) is trivial
(being & multiple of the first-order ome), with the result that

-y
g(x) = -ﬁx[(zmz -1)in Ee-;sz(n -1) -%:I(zn 5---‘%"1)% part —E -

%2

lM24< J_—+2 n)ﬁ+%w-ﬁ[ln§l+@_zn(l-x)]

l+x l-x
(534)
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Finally, equation (12a) gives as the second-order slender-body perturbation

- potential
oo (@fa e L fali 202 1) pereee 3
Ll an'MzTéxKln 2\/?'1-1;@)(7' P w1 ) 2]
3 (B o) X e 1a2m) 1n(ion)] (550

As a partial check, it msy be noted that this result conforms to the
second~-order similarity rule (ref. 27). Differentiating gives the velocity
components. On the surface of the ellipsoid

u_ 2. 1 2,2 2 - 3-x2 1 1l+x2 2
U—l+7~2<2n o l_x2>+f4{5 n 5T+[Mz Mex2 -2 2l_x2]2n BT+

[i 1+x2 2_Zn(l+x)_Zn(l—x)_il-5x2+2x4]_£+ x2
2 (1L-x2)2 h(1+x)® 4(1-x)® & (1-x2)2 L (1 -x2)2

1 - 5x2 1 Ox4

clho

_ 2.1 1 1 2,2 2 |2 3-x2 1 1 2
_1+«2<7,n 5775 T 2) {B in +|:M M2x2 (1-x2)2 21_x2]z et

Mz[l_ﬁ__z_z o _1n(ltx) in(l-x) 31-5@2&4] 51 1
2) ——

, 2 (1- L(1+x)2 L(1-x)2 & (1-=x2)2 8 k 1-x2
3 1 1 1-5x2+2x4
3 —(l-x2)2 +=Men __(1-x2)2 } (54b)

The maximum speed in the flow field (aside from spurious singularities
at the ends of the ellipsoid that are to be removed) occurs at the surface
in the middle, and is

Smax _ 2. 2,2 2 (2.l n2it@n-Ltowel3 1 )
. 5 = 1+ ZnBT l>+'r4[ﬁ 1n BT+<M 5 B +3 M=n M i 27,n2

(55)
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This agrees with the result of Schmieden and Kawalki (ref. 31) except for

the coefficient of M2T4, which they give as —5/4 instead of -<ﬁ-% in é). ~

They work with the perturbation form of Stokes' stream function rather
than the velocity potential, which facilitates imposing the condition of
tangent flow at the body (particularly since they impose the condition -
exactly, and only later extract the slender-body series). However, they

retain only linear and quadratic terms in the equation of motion. The -
cubic term M2p,2¢.,. iIn equation (11) ylelds a second-order effect, and '
the same is true of some quartic as well as cublic terms when one works -
with Stokes' stream function. Furthermore, the linearized equation for -
the stream function is not correct to f£irst order except in the slender-
body approximation and in any case does not form & proper basis for
iterating to find the second approximation (ref. 29). Thus for supersonic N
flow past a circular cone, Schmieden and Kawalki's procedure was found to

yield the second-order slender-body solution correct except for the term

in M®T1%, This is presumebly true in general, so that the disagreement

in that term found here for the ellipsoid might have been anticipated.

The present solution predicts s meximum speed slightly higher than

Schmieden and Kawalki's, which does not appear unreasonable in view of

their comparison with the Janzen-Rayleigh solution to order M® for a

sphere, in which thelir speed was somewhat low. —

In the transonic smell-disturbance approximation, the surface pres-
gsure coefficilent is given simply by - =

= - 2 .1 N y+l T4 1-5x2+42x4 i
CPS_ T2<2 in BT 1 l_x2> 2 1 -M2 (l_xz)z (56) .

Rules for Rendering Solution Valid Near
Round Ends in Subsonic Flow

As in incompressible flow, the ratiq of the exact solution for a
paraboloid to its formel series expansion serves as a first-order -
miltiplicative correction factor. Thus it hes been shown (ref. 1h)
that the slender-body solution for surface speed is converted into a
uniformly valid firset approximstion by the rule

Loz, ) () o

where Q(2x/p, M) is the speed ratio on a paraboloid of revolution of

nose radius p at Mach number M. Although Q has not been found

exactly, it can in principle be determined to any desired degree of N
accuracy by the Janzen-Rayleigh method. In reference 14 this has been

done including terms in M2, and numerical values have been tebulated.
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Singularities remain if this first-order rule is spplied to the
second-order solution. A second-order rule is required; and its form
can be deduced with the aid of the preceding solution for the ellipsoid.

Replacing x by x/c in equations (53) to (56) gives the solution
for an ellipsoid whose length is 2c rather than 2 (cf. sketch (m)).
Then for small velues of the distance z = x+c measured from the nose,
the surface speed is found from equation (54b) to have the form

1n n

4 _ _ .t 2.5
—ﬁ———1+72[ Izt in At 8 +. .]+

M2 2§22 (3 3 )___ 2 1
[_LL_ 25 B +Q2 M2 - Emen <E in BT+32 Si. . ]

(5Ta)
The parameters p and B of equation (k2a) are related to the present
c and -T by p = T2c and B = 7, and in those terms the above expression
becomes
1 1
4o _ e (1 Y 5
T —l+[ )-l-z+<2 in 555 "8 B+. . .+
M o? . 8% (3.3 ,..1 );ﬁ Bo
[1+ =y in 5, T\35 138 M2 i M2n = \8 in BZB-+32 el R
(5T)

This expansion could be used to form a second-order rule, but the result
is simplified by first determining the corresponding expansion for a
general body, and then choosing a simple special case.

It is clear that, corresponding to equation (57b), the solution for
any round-nosed body described by equation (42a) will, near its nose,
have the form

q[? =1 +[ -1f—Z+Rl(z)]+

2 2 2 2
(£ S mie (3w -ten) Lo anm] (ot

Here C 1is a constant, end R; and R, are regular functions of =z
between which a relation will now be found. Although equations (57b)
and (58a) are both singular at z = O, their ratio must be regular.
Dividing the latter by the former and expanding gives
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l+[Rl(z)+<-58---121 in %>B+. . ]+{[% Rl(z)—c+j-%B:l %+. . }
end this is regular at 2z = O only if

C = -%B+ R, (0) (56v)

There is a particular body for which equation (58) has the simplest
form, namely that for which, Ri(z) = Rz(z) = 0, so that

- RS (Fedr-bren) S-% 2] 9

Note that except for the term in B this is Jjust the second-order slender-
body solution for the parsboloid.

Now suppose that the exact solution is known for any semi-infinite
body having prescribed values of p and B. Then the ratioc of it to its
formal series expansion serves as a second-order multiplicative correc-
tion factor. Hence a uniformly velid second approximetion is glven by

_63 exact solution "qn2
] = = 2
W) TN RIS ERER ) I

élgf.éyinite
(60a)

Dividing both the serles for "¢ "/U and that in the denominator of the
2

bracket by equation (59) mskes them regular at z = 0, and gives, after
expansion, )

L exact solution ["qz" p "ql"
—_= + +
U 1 0 U 4 U
1 +Ra(a) #{ra(a) 1§ [ Rae) - Ra(0) | £
semi~
infinite
body
w22 1.3 @)9_ 3 e]
(h in e 81er+ n z2+16Bz (60b)

This rule may be written finally as®

®As M-0 this reduces not to the rule of equation (42b) but to an
equally valid alterngtive.
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oz 1 3 ¥n) o 3 g]
sz 32 8 R z2+1éB
(60c)

where Q(2z/p, B M) stands for the first bracket in equation (60b).
Note that the terms in the bracket are just those required to cancel all

pingularities in "¢ "/U.

A combined rule for two round ends is again found by applying the
rule twice in succession and simplifying insofar as possible. The result
is

R I R P O S N
T [(xpi)z . 2(];2;2) * (bpfc)z w 2(:2;:)] 3 %‘E%)z *
WD) [ oo G ) (60a)

Mixed Rules Based on the Paraboloid

The function Q(2z/p, B; M) required in the above rules could in
principle be determined to any desired accuracy by the Janzen-Rayleigh
approximation. However, the practical details appear almost insurmount-
able except in the speclal case of the parsboloid, for which B =
(The next section shows that even the solution for the paraboloid has not
yet been carried far enough to yield reascnaeble accurascy &t high Mach num-
bers.) It is therefore worthwhile to simplify the rules so as to base
them on the solution for the paraboloid.

If B 1is to be replaced by zero in the argument of @, it must be

omitted elsewhere in equations (60). Hence the rule for a single round
edge, corresponding to eguation (60c), is

Ez - <2Z ' l:txqle 1:q111 <M2 1 3. n) 2]

—_—_—2- = =2 —— _9_. _—— .L

U Qp’M T iz U+h7'32p32 M+ =
(61a)

Likewise the counterpart of equation (60d) for two round edges is
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Ao,y _j2(x-a) 2(b ~x) . "e" 1/ Py Pp Y\ My
T 'Q[ bs ° M]Q[ s M { U T \x-2'%-x/ U T
M2 P2 2(x -a) PL2 2(b ~x) 1 <;Da pbx:f
T[(x-a)z - 550, (b -x)2 . szb]-'ﬁi & b-x/ ©

“2@ @ [<x SN <bpbi)2]} (61b)

These rules gilve a result that is, of course, correct to second
order except near the ends., It 1s correct only to first order within a
distance of the order of the radius p from the ends, Finally, it is
completely invalid within a much smaller neighborhood of the ends of the
order of E@p (which is proportional to the sixth power of the thickness
ratio for a body 6f unit length). The reason is that the bracket in
equation (6la) has not been completely freed of singularities, but retains
a term -3Bp/16z (which is cancelled in the original rule of eq. (60c)).
For most practical purposes this distance is so minute as to be altogether
negligible, and (as indicated by the subscripts) these mixed rules can be
regarded as ylelding & sclution valid to first order near the ends and to
second order elsewhere, .

Example: Uniformly Valid Solution for Ellipsoid

These rules can now be applied to the formal solution of egua-
tion (54b) to £ind & uniform approximetion for the ellipsoid. Using
the combined rule of equation (60d) gives as the uniform second-order
solution.

q, 2(1+ 2(1l-x 2 1
?2 =Q,[—(-723-{-l s T2; MJQ[——{-TZ—) s T2 M:l {l+-ra<1n B—;-§>+

T4[(1 -1)10% §;+emn 52;+M2n -3-2 Mz]} (62)

The last bracket has of course been freed of singularities, but in addi-
tion it is seen to be a constant, independent of x, This simple feature
is the counterpart, for second-order subsonic flow, of Munk's rule for
incompressible flow past an ellipsold, according to which the surface
velocity is just the projection of the maximum velocity.
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Using inetead the mixed rule of equation (61b) yields

Ezu,l _ Q[2(l:2x) ; M]Q[a(l x) ]{1+Tz<n———>

- 2 2 3 3 3 1
'r“[(l M )1n® B_I_+2M‘27.n BT+M?n S-s ¥ 81—x2:,} (63)

and the remaining nose singularity is evident. Its effect may be illus-
trated in the case of incompressible flow. At a distance of one radius
from the nose (which would be 0.02 of the length for & 20-percent-thick
ellipsoid), equation (63) gives

a5 1_ |2 2_13
_.[; —J;l:l+12<2nT 1_6]

The exact solution has -12/16 instead of -13/16, showing that the result
is valid only to first (though nearly to second) order. Again, at a
distance of only Bp = 7 from the end (0.0008 of the length), equa-
tion (63) gives

qZ,l_l3 )
= 1€ \/E'rl+. . .

U

The exact solution lacks the factor 13/16, but the leading term in the
pressure coefficient is nevertheless given correctly as unity, so the
result is regarded as being correct to :E‘irs‘b order. This ceases to be
true only at distances of the order of B® p from the end, which is
0.000032 of the length for a 20-perceni-thick ellipsoid.

-2 r
Comparison With Experiment

Matthews (ref. 32) has meas- Gp
ured pressures over the front half

of an ellipsoid of revolution of 0 / -6 -4 -2 0
thickness ratio 1/6 up to Mach num- °/ x

bers of 0.940 (the measured criti- / . q

cal Mach number being 0.916). The dp Formal first-order - --- -
ellipsoid was supported from the - Fot:mul second-order  — —
rear by a sting but, according to | Umform.second-order
first-order slender-body theory, 2F | Experiment (ref.32) o

the sting affects the pressure coef-

ficient over the front half by less '|N°3° radius

than 0.003, which is negligible. 3L

The pressures measured &t M=0.900 Sketch (n).- Pressure on ellipsoid
are compared with first- and of revolution with T = 1/6 at

second-order theory in sketch (n). M = 0.900.
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Over the middle of the body the experimental values agree closely
with the second spproximation, which is seen tc be a significant improve-

ment over the first.
1.0

— % - — —

MO
Janzen-Rayieigh { M2

cla

first-order
second-order — — —

! Slender-body {

Extracted from experiment (ref.32) e

X/p

B

—
2

!
[
I
|
|

'
!
)
.
.

L

-2

Sketch (o0).- Speed ratioc on parabo-
loid of revolution at M = 0.90.

Ames Aeronauticel Laboratory

Near the ends, however, the experimental values lie

between the predictions of second~
order theory with and without the
application of the mixed rule. The
reason for this is believed to be
simply that the values of Q, the
surface speed on a paraboloid, used
in the rule are inaccurate. They
were teken from the Janzen-Rayleigh
approximation including only terms
in M2 (table II of ref. 1k), which
is almost certainly inadequate at
M = 0.900. Indeed, the present
theoretical results are belleved to
be sufficlently trustworthy that
one can work backwards to extract
experimental values of @ <for the
paraboloid from the measurements on
ellipsoids., The result is shown in
sketch (o) in comparison with all
existing theories.

National Advisory Committee for Aeronautics
Moffett Field, Calif., May 28, 1958
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APPENDIX A
PRINCIPAL SYMBQLS
& abscissa of nose of body
b abscissa of tail of body
3 2 -1) 1/2
B bluntness of nose (see eq. (42a))
C constant in equations (58)
Cp pressure coefficient
c half-length of body
D drag
F source strength in slender-body theory, RR!
i second~order increment in F
G(x) term independent of r in slender-body potential
g(x) second-order increment in G(x)
IE_ subsonic slender-body integral (see eq. (1ka))
Jg_ supersonic slender-body integrsl (see eq. (14b))
k arbitrary constant
K constant term in slender-body potential (see egs. (47) and
(52))
1 length of body
Lo(x) Euler's dilogarithm
M free~stream Mach number
. 25
2 1-M
N supersonic counterpart of n, r+l L

39
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P,P,,P
P’ ;’ 2 }- general functlions in similarity rules (see egs. (22) and (28))
12P2,Pg

~

Q speed on surface of semi-infinite round-nosed body, referred
to free-stream speed N
q local speed of flow
R(x) radius of meridian curve of body of revolution
RysRo regular functions
T radius in cylindrical polar coordinates
U free-stream speed
u streamwise velocity component
X streamwise coordinate
Z abscissg measured from round end into body
B (l-M?)l/z
7 adiabatic exponent )
Ay second~order increment .
3] initisl slope of sharp-nosed body
€ small perameter
A (See eq. (42b).)
P nose radius of round-nosed body
Peo free~stream density
T thickness ratio ;
U] full velocity potentlial .

first~order perturbation velocity potential

¢ second-order perturbation velocity potential
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(")
()
)
me g

Subscripts and Superscripts

associated with nose
assoclated with tail

value on surface of body
first-order value
second-order value

mixed second- and first-order value
maximim value

regular part (see eq. (52b))
singular part (see eq. (51))
derivative

uniformly valid value

formal value

ha
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APPENDIX B

SHORT TABLE OF SLENDER~-BODY INTEGRALS

The integrals appearing in the slender-body solution were denoted
in equations (14) by

{%( )}- <Ti zig) dt  (subsonic) (Bla)
JxF(x} f F(x) F(g) d¢  (supersonic) - (B1b)

In the supersonic case the notation is designed to emphasize the different
roles played by x 1n the integrand and in the upper limit of integration.
The subsonic integral can be expressed in terms of the supersonic one by

IE{F(X)} = sgn(x - a)Jﬁ F(x)}+ sgn(b - x)J‘.}; F(x)} (B2)

of which equation (16) is a special case.
For purposes of shifting the origin of abscissas, it is convenient

to relate the general supersonic integral to that for some standard value
of the lower limit =&, say zero, The desired expresslon 1s easily seen

to bet
J}af{F (x)} = J}é'a{F (x + a)} (B3)

Combining these last two resultas gives a useful expression for the general
subsonic integral in terms of the standard supersonic one; for a < x <D,

B} - ~fpte s} 5 ofrte ) o

A short teble of the subsonic and supersonic slender-body integrals
is given below. The limits of integration have been taken as a = -1,
= 1 for the subsonic case end a = Q0 for the supersonlc. Results for

1 -
The meaning of Jb <F(x +a)} in conjunction with the following

table is that one looks up F(x+a) in the column labeled F(x) and in
the corresponding column lsbeled J, replaces x by (x-a).
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other ranges of integration can be extracted using the two relations

above (egs. (B3) and (B:)).
only for the span of the body, that is, for -1 < x <1l

The table was

checked where possible using equation (Bh).

h3

Values of the subsonic integral are given

1
F(x) Ii’l{r(x)} = f IL(EF_(E_) at, [xl <1 Jaé F(x)} = fo_(x)_-F(g_) dat
-1 |x-g] o x-§
1 [»] [¢]
x 2x x
x2 3x2-1 g' x2
x3 % x3-x % x2
x* B} 8
2@.+%‘-+ +%)x“-
x%,0=1,2,... - <l +%+%+ . +%>xn
[x“'z sLxihy,,, (T +l+(')n]
2 n-1 n
NE3 -~ - - 2(1-1n 2) Jx
i 2[»]1-::2 (1-1n 241x2)-x sin-lx:, - - -
q2
in x - - - ?
Xx in x - - - x(ln x+%2--l)
x2in x - - - E(% in x+—’?-g>
1n(1-x) 1{‘3-1.2(1'5—" -3 X Ly(x) - 102(1-x)
x 1n(l-x) --- ~xL, (x) -%-_x'an(l-x)-(l-x)ln(l-x)-x
*2L5(x) - & x2102(1x) -
in(1x) T 2 0 -2x)in@x)-F x-2 x2
~x3L,(x) - % x31n2(1-x) -
x3in(1l-x) - - - % (1—x) (2+5x+11x2)1n(1-x) -
(% x +-§ x2 +l—§% x3
~x4Lp(x) - £ 24102 (1x) -
x*1n(1-x) o (1-x)<%+%x +% x2 +§22 x3 in(1l-x) -
(Br B werd i 2R xe)
1n(1-x2) %-% e X ---
2 1 L L+
x21n(1-x2) 56—-5 in2 ﬁ—:)-;—a: In ﬁ+ .
(3x2-1)1n(1-x2)+(1-5x2)
A{F-F e 22). Loy b2,
x41n(1-x2) - ! ---
(6 xt-x® -2 n(1-x2)»,<ﬁ--g x2 -?—gg x*)
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